SOME EXACT SOLUTIONS OF THE FERRO-
HYDRODYNAMICS EQUATIONS

V. G, Bashtovoi UDC 538.4

The theoretical study of nonisothermal flows of magnetizable liquids presents serious mathe-
matical difficulties, which are intensified as compared to to the study of normal liquids by the
necessity of simultaneous solution of both the hydrodynamics and Maxwell's equations, with
corresponding boundary conditions for the magnetic field. Thus, in most cases problems of
this type are solved by neglecting the effect of the liquid's nonisothermal state on the field
distribution within the liquid, and also, as a rule, with use of an approximate solution for Max-
well's equations and fulfillment of the boundary conditions for the field [1-3]. The present
study will present easily realizable practical formulations of the problem which permit exact
one-dimensional solutions of the complete system of the equations of thermomechanics of
electrically nonconductive incompressible Newtonian magnetizable liquids with constant trans-
fer coefficients. A common feature of the formulations is the presence of a longitudinal tem-
perature gradient along the boundaries along which liquid motion is accomplished. Plane-
parallel convective flows of this type in a conventional liquid and their stability were considered
in [4-86].

1. The basic system of ferrohydrodynamics equations may be written in the following manner (see, e.g.,

n:

pvW)v = —Vp + nAV + pg + MV /T; (L.1)

divy = 0; (1.2

vy T = xAT: (1.3}

rot H =0, divB = 0, B = po(H + M), M =(1/HH: (1.4)

p =01 — (T — T, M = A° + y(H — H — (T — 1", (1.5)

where p is density; v, velocity; p, pressure with consideration of magnetostriction terms; 7n, viscosity coef-
ficient; g, acceleration of gravity; u,, magnetic permittivity of a vacuum; M, magnetic moment of a unit volume
of the liquid; H, B, magnetic field intensity and induction; T, temperature; », thermal diffusivity; 8, thermal
expansion coefficient; y, magnetic susceptibility; K, pyromagnetic coefficient with consideration of dependence
M(p); the index zero denotes some mean value of quantities from which they are evaluated.

The equation for temperature, Eq. (1.3), omits the term describing the magnetocaloric effect, which
would produce only an insignificant contribution to the longitudinal temperature gradient in a few of the prob-
lems considered below.

Boundary conditions for velocity are derived from the condition of adhesion on the solid boundary and
stress balance on the free surface. The temperature distribution on the boundaries is considered specified,
while for the magnetic’ field the tangential component of intensity and the normal component of induction must
be continuous on the boundaries., ‘

2, The first problem considers the flow of a liquid in the absence of gravity (g = 0) a2long an infinite
toroidal cylinder (parallel to the z axis), bounded by inner radius Ry and external radius Ry, at the boundaries
of which there are maintained constant, and generally speaking, differing temperature gradients

T=T1+Y1z at r=RllT=T2+Ygz at r=R,.

Such motion is realized in the central portion of a toroidal cylinder with length much greater than its
width, with faces bounded by masses maintained at constant but different temperatures,
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Thus, in a cylindrical coordinate system (r, ¢, z) we consider a one~dimensional, one-directional (v =
[0, 0, v(r)]) flow of a magnetizable liquid with temperature distribution T =T(r, z). Maxwell’s equations for
r >R, also admif a one-dimensional seolution H={0, i/r, 0], M=[0, M(r, z), 0], corresponding to the field
created by passage of a constant current I=27i through an internal cylinder (r <R;), which exactly satisfies
the boundary conditions. The motion of the liquid and the temperature distribution within it do not change
this field distribution,

Writing the expression for temperature in the form

1 R
T= 1o (s — T g o [ (o — 0 (2R 16,

we obtain from the original system of eguations (1.1), (1.5) forthe desired functions vir), 8 ()

_dp oH op . 43 [ &\ _ or _ 10 88
o T M5 =0, ‘“&Tnﬁ?(’a‘r)“‘)* ”"‘"7"“("‘) (2.5

with boundary conditions for @:
8=0 a r=R; R,

Eliminating the pressure from the first two egquations of Eq, (2.1) by cross-differentiation and subtraction,
and considering the equation of state (1.5), and the ‘explicit form of the field and temperature, we obtain for v(zr)
an ordinary third-order differential equation with a known free term:

Gitof | _ mKil In (r/Ry)
3'"{# 6r(r5;)] =5 [v‘ T (e — ) ln(lel:tl‘l)]
the general solution of which is

= ki Y2 ¥ .
ve- L] [(Vl T In :RE/RII)) r+ Tn (32/31)7‘111 ]+ er? ey In ,'T‘Ca- (2.2}

The three arbitrary constants ¢y, ¢y, ¢3are determined from the two boundary conditions at r =Ry, R,,
and by specifying the liquid flow rate through the channel cross section. If the channel is open, the flow motion
may be brought about by an external pressure difference between the ends, In the case of a closed channel
where forced convection is absent, and motion is produced solely by the thermomagnetic mechanism of free
convection, no liquid should be expended and the third constant is found from the condition

R,

{ var=o. (2.3)

Bl

Most striking in Eq, (2.2) is the fact that the presence of a constant radial pressure difference Ty — Ty
has no effect on the velocity distribution of the convective motion,

For a specified velocity profile Eq, (2.2), integration in general form of the third equation of Eq. (2.1)
for temperature offers no difficulty in principle, although it is cumbersome:

=11 In (r/Ry) r
-8 ,‘i ,{5”’['\?1‘*‘(Yz“\’ﬂm]dr}dr—}-c‘tlnE.

The boundary condition ® =0 at r =R, is fulfilled automatically, and the constant ¢, is determined by the
second boundary condition,

On the basis of the solutions obtained, we will consider some concrete situations, First of zll let the
temperature gradients on both channel boundaries be identical (yy= vy=7¥) and both boundaries be rigid (v=0
at r=Ry, Ry). Then, introducing the dimensionless coordinate x=(r — R,)/ (Rz R;) with range from 0 to 1 and
dedimensionalizing the velocity with the scale factor n/(R, — R,), we obtain the distribution of the dimension-

less velocity V of the closed convective flow in the channel in the form
Ra,,
Ve — T ){x 2+ clx (24 82) In{(1+8) —(2+6) In (1 +682)1},

¢ = 8/2[2(8% + 36 - 3)ln (1 -+ 8) — 382 + §)1, (2.4)

where § = (R, — R,)/R,; Ra,, = u,Kiy (R, — R)*/quR} is the magnetic Rayleigh number.
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For a small channel width (0 «1) solution (2.4) transforms to the well-known solution describing plane-
parallel free convective flow in a horizontal layer with longitudinal temperature gradient under the influence
of gravity [4]:

= (Ra,/12)(2z° — 322 + 1),

in which the role of the conventional Rayleigh number is played by Ray, and the motion actually occurs in a
magnetic field with constant gradient i/ R% equivalent to the acceleration of gravity g.

The velocity profiles calculated from Eq. (2.4) for various values of 6 are presented in Fig. 1 (curve 1
corresponds to & =0,1; curve 2, § =1). For the same values of Ram with increase in & the intensity of the
motion decreases. The dependence of maximum velocity Vyy in the left half of the channel x< 0.5 (curve 1)
and in the right half (curve 2) is shown in Fig. 2.

The following situation, which is of special interest, develops when the external boundary of the liquid
(r=R,) is free, while the internal boundary, as before, is rigid. We stress that a cylindrical free surface is
completely natural for a magnetizable liquid in the given case, i.e., in the absence of gravity and in a magnetic
field with a radial intensity gradient. Then the boundary condition for velocity on the free surface, with con-
sideration of the temperature dependence of the surface tension coefficient (@ = a? — (T — T?), which can be
obtained from the equation of stress balance on the boundary, will have the form [7]

oy aaaT__ oy )
n (5;)7'=Hz T s oy (Yl =Y. =7)

The surface tension gradient on the free boundary produces a thermocaplllary convection mechanism {7],
which acts together with the magnetic forces.

The solution (2.2) for the given boundary conditions appears as follows:

) <1 ) / 2 2\
S 7S5 o BeKly 0y ) #2_ p2y . [ r re— Ry
V= " (’ B;) T (2'.“”2 Zﬁﬁg (r R1)7D\1n7{—1—w .

The constant D is determined from the condition of closed flow (2.3).
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From the equation obtained it follows, first of all, that the effect of the thermocapillary mechanism is
insignificant at o< u (Ki, independent of channel geometry. At the same time, this effect is dominant at
o > i KiRy/Ry). The dimensionless velocity distribution in the channel for purely thermocapillary convection
is given by the expression
V= — s {22+ 80) + DI2(1+ 89 In (1 4 8x) — 82.(2 + 821}, (2.5)

D = —5(3 + 6)/(6(1 + 8 In (1 + &) — 65(1 -+ 8)2 — 823 + &)1,

where Ma= oy(R, — R;)*n» is the Marangoni number.

This velocity profile is depicted in Fig. 3 (curve 1 corresponds to 8 =0.1, curve 2 io 6 =100). With
increase in 0 at the same value of Ma the intensity of the motion on the free surface increases, The dependence
of V(1) on 6 is shown in Fig, 4.

At small channel width (6<«1) Eq, (2.5) transforms to the known expression for plane-parallel flow [41:
V = (Ma/4)(2z — 3z?).

3. We will consider the flow of a magnetizable liquid in a horizontal plane-parallel channel cut off by
a massive ferromagnetic having pyromagnetic coefficient K and magnetic susceptibility y the same as those-of
the liquid. These last requirements are significant in obtaining exact one-dimensional solutions of the Max-
well equations and satisfying the boundary conditions. The geometry of the problem is depicted in Fig, 5. A
temperature difference is maintained across the walls of the mass, ensuring a constant longitudinal gradient
v in the boundaries of the layer: T=T"+yXat y=2], The entire system is located in an external homogene-
ous magnetic field H?, normal or tangential to the lateral boundaries of the mass. Then in the central portion
of the mass, according to Maxwell's equations (1.4), (1.5) in the first case the following distribution of fisld
He and magnetization Me are realized (values outside the liquid layer will be denoted by a subscript e):

Hy=My=0, He=H-+[Ky/(l-+0]z,

0 0 (3'1)
Ho 4 M, =HS M, =M]—[Ky/(i+ )l

while in the second case

Hog= M, =0, Hypy=H!=H M, =M — Eyz. (3.2)

In the central part of the channel we will have a plane-parallel convective liquid motion vy =0, vx=v(y) and
temperature distribution T =T%+ yX+$(y), while in the boundary layers x==1,v=4 = 0,

In accordance with Maxwell's equations and the boundary conditions, the field and magnetization distribu~
tion within the liquid will be described by the following expressions:

a) for external magnetic field H, parallel to the layer (Eq. (3.1))
Hy=My=0, H,=H;+[Ky/( -+, (3.3)
Hi = I, Me=M°—[Kyi(l = 2] 2 — K9 (y);
b) for external magnetic field Hg perpendicular to the layer (Eq. (3.2))
Hy=M:.=0, Hy,=H;=-[K/(1+8(y), (3.4)

H MO =B M0, My =M — Kyz — (K/(L+ 219 (y).
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We note that all inhomogeneities in the field and magnetization are produced by the temperature in-
homogeneity. In the first case the magnetic field intensity has only a horizontal gradient, in the second, only
a vertical gradient.

To find the desired functions v(y) and ¢ (y) the system of equations (1.1)-(1.5) gives
vy = xd"’;

a) . H = [H), 0, 0] 5.5
—0p/ox + "' + u MOH |9z = 0, —dploy — og = O; (3.6)
b H = [0, H(y), 0}
—apldz + w'' =0, —dpldy — pg + wMoHIdy = 0, (3.7

where the primes denote differentiation with respect to y.

Eliminating the pressure from Egs, (3.6), (3.7) and infroducing the dimensionless coordinate § =y/1,
velocity V=(I/%)v, and temperature ® =4/y! , and considering Egs. (3.3), (3.4) we obtain

V=28", a) V'’ — Ra,8 — Ra =0, (3.8)
b) ¥"'" + Ran® — Ra =0

and boundary conditions V=0=0at £=+1,

The conventional Ra and magnetic Ram Rayleigh numbers are defined in the present case in the following
manner: Ra = Pgylip/xn, Ran = pK** (1 4 x). We note, first, that the value of Rayy, is always positive,
and second, that the force producing convection in the given situation is gravitation, For Ra= 0 the problem
of Eq. (3.8) becomes an eigenvalue problem and gives the value of the critical Ram, corresponding to disrup-
tion of mechanical equilibrium, equal to (7/2)%. This is true only of case a) where the magnetic field is
parallel to the layer. In case b) mechanical equilibrium of the liquid is stable. For Ra # 0 motion develops
at any value, no matter how small,

System (3.8) is equivalent to the equations describing plane-parallel convective flow of a conventional
liquid in an inclined layer with a longitudinal temperature gradient [6]: a) with an acute angle between the
temperature gradient and force of gravity; b) when the angle is obtuse. This calls to mind the fact that in
both cases the effect of the magnetic field is equivalent to a longitudinal component of the gravity, despite
the fact that in the first case the field has only a longitudinal, or in the second case, transverse, intensity
component within the liquid. From the example considered it is clear that the action of a magnetic field in-
tensity gradient on thermal convection of a magnetizable liquid is not always equivalent to a gravitational
force acting in the same direction, in cases where the gradient is produced by a temperature inhomogeneity.

The solutions of Eq, (3.8) with specified boundary conditions corresponding to closed flow have the form
, 4 Ra (sin ef sh s§) £ — ]f,,-ﬁa—- .
2 Vﬂam sing she J° my ,

_ Ra [1/sinef  shef .

9= Bam[Z(sins + she)_g]’

V= Ra sin ek ch ef __ cosefshef
_VRTMS singche coseshe )'

0= — Ra 1 singfchef | cosefshed .Jl
~ T Ra, coseshe ' sineche )»—gj,

S
S=tgecthe Lctgethe, &= Ran/d

and, as was noted earlier, have been studied a number of times for conventional liquids {see, e.g., {6]).
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EFFECT OF SPECIMEN TEMPERATURE ON THE BREAKING
POINT FOR SPLITTING-OFF IN AMG-6 ALUMINUM ALLOY

Yu, V. Bat'kov, 8., A, Novikov, UDC 620.171.3
V. A, Sinitsyn, Yu. S, Sobolev,
and A, V., Chernov

The investigation of the temperature dependence of the strength of constructional materials
under intense shock loads, including breaking loads, is of considerable practical interest,
There are certain technical difficulties involved in loading the materials and making the re-
quired measurements in such experiments. Hence, the number of papers devoted to this
problem is extremely limited, In [1, 2] data is given on the elastic—plastic properties of a
number of metals at normal and high temperatures, obtained by investigating the parameters
of elastic waves excited by an explosion. In [3, 4] investigations were carried out of the
temperature dependence of the breaking point for splitting-offin steel and copper. In the
present paper we investigate the effect of the specimen temperature on the breaking point for
splitting off in widely used AMG-6 aluminum alloy in the temperature range from 0T to 550,
i.e., practically up to the temperature at which the alloy begins to melt,*

The specimens investigated were cut from a single blank and were disks 70 mm in diameter and 10 mm
thick with a conical side surface (at an angle of 459,

The specimens were tested on special equipment, a diagram of which is shown in Fig. 1,

Specimen 1 was heated by the radiant heat flux from a Nichrome filament heater 2 with a power of 3 kW
(50 A, 60V), mounted on a heat-resistant screen, The temperature of the specimen was monitored with a
thermocouple 3 up to the instant when the specimen was loaded. The time taken to heat the specimen up to a
temperature of 550°C was ~ 20 min, The nonuniformity of the temperature over the specimen thickness at
the instant of loading did not exceed ~5C. The heated specimen was displaced by means of a cable 4 along
the direction 5 on a special platform 6 under the loading device 7, The specimen was loaded by a shock alu-
minum plate (110X 150 X 4 mm), scattered up to the required velocity by a glancing detonation wave from a
layer of explosive placed on it, initiated simultaneously along one of the faces of the plate from the explosive,
To prevent splitting-offin the striker the latter was separated from the explosive by a layer of porous ma-
terial. The velocity of the striker was varied by varying the thickness of the layer of explosive, and simul-
taneity of the shock on the surface of the specimen was achieved by placing the striker at a certain angle to
the specimen depending on the velocity of the striker. The split-off plates formed as a result of the loading
were collected in practically undamaged form using a porous damper 8 of low rigidity placed in a steel con-
tainer 9. '

The method of determining the breaking point was as follows, A shock load was applied to the specimen
and the presence or absence of split-off was observed visually after the experiment. (If necessary the specimen
was cut along an axis, a thin section was made, and metallographic analysis was carried out.) By a gradual

*The melting of alloys and solid solutions is characterized by a melting temperature range., For AMG-6 alloy
the temperature at which melting begins is ~570°, and the temperature at which melting ends is ~640°C [5].
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