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The theoretical  study of nonisothermal flows of magnetizable liquids presents  serious mathe- 
matical difficulties, which a re  intensified as compared to to the study of normal liquids by the 
necessi ty of simultaneous solution of both the hydrodynamics and Maxwell's equations, with 
corresponding boundary conditions for the magnetic field. Thus, in most cases  problems of 
this type are  solved by neglecting the effect of the liquid's nonisothermal state on the field 
distribution within the liquid, and also, as a rule,  with use of an approximate solution for Max- 
well 's equations and fulfillment of the boundary conditions for the field [1-3]. The present  
study will present  easily real izable practical  formulations of the problem which permit  exact 
one-dimensional solutions of the complete system of the equations of thermomechanic s of 
electr ical ly nonconductive incompressible Newtonian magnetizable liquids with constant t rans-  
fer  coefficients.  A common feature of the formulations is the presence of a longitudinal t em-  
pera ture  gradient along the boundaries along which liquid motion is accomplished.  Plane-  
parallel  convective flows of this type in a conventional liquid and their  stability were considered 
in [4-6]. 

[1]): 
1. The basic system of ferrohydrodynamics equations may be written in the following manner (see, e.g., 

p(vv)v = --VP + alAv + Pg + poMvH; 
divv = O; 

vv T = xAT~ 

rot H = 0, divB = 0, B : ~t0(H + M), M =(M/H)H: 
p----p~ [~(T-- r~ M = M ~ ~, x ( H - -  H ~ - I { (T  - T~ 

(i.i) 

(1.2) 
(1.3) 

(1.4) 
(i.5) 

where p is density; v, velocity; p, p ressure  with consideration of magnetostriction terms;  7, viscosity coef- 
ficient; g, acceleration of gravity; #0, magnetic permitt ivity of a vacuum; M, magnetic moment of a unit volume 
of the liquid; H, B, magnetic field intensity and induction; T, temperature;  ~, thermal diffusivity; p, thermal 
expansion coefficient; ~, magnetic susceptibility; K, pyromagnetic coefficient with consideration of dependence 
M(p); the index zero denotes some mean value of quantities from which they are  evaluated. 

The equation for temperature ,  Eq. (1.3), omits the t e rm describing the magnetocaloric effect, which 
would produce only an insignificant contribution to the longitudinal temperature  gradient in a few of the prob- 
lems considered below. 

Boundary conditions for velocity a re  derived froha the condition of adhesion on the solid boundary and 
s t ress  balance on the f ree  surface.  The tempera ture  distribution on the boundaries is considered specified, 
while for  the magnetic" field the tangential component of intensity and the normal component of induction must 
be continuous on the boundaries. 

2. The f i r s t  problem considers the flow of a liquid in the absence of gravity (g = 0) along an infinite 
toroidal cylinder (parallel to the z axis), bounded by inner radius R i and external radius Rz, at the boundaries 
of which there  a r e  maintained constant, and generally speaking, differing temperature  gradients 

T = T i - - ~ - ' ~ I  z at r-----B1, T ~ - - r ~ q - ~  at r = R , .  

Such motion is rea l ized in the central  portion of a toroidal cylinder with length much greater  than its 
width, with faces bounded by masses  maintained at constant but different temperatures .  
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Thus,  in a cyl indr ica l  coord ina te  s y s t e m  (r, ~v, z) we cons ide r  a one-d imens iona l ,  one-d i rec t iona l  (v = 
[0, 0, v(r)]) flow of a magne t izab le  liquid with t e m p e r a t u r e  dis t r ibut ion T =T( r ,  z). Maxwell~s equations fo r  
r > R l a lso  admit  a one -d imens iona l  solution H = [0, i / r ,  0], M = [0, M(r ,  z), 0], co r r e spond ing  to the field 
c r e a t e d  by p a s s a g e  of a cons tan t  c u r r e n t  I = 2~i  through an internal  cy l inder  (r < Rl), which exact ly  sa t i s f i e s  
t he  boundary condi t ions .  The mot ion of the liquid and the  t e m p e r a t u r e  d is t r ibut ion within it  do not change 
th i s  f ie ld d is t r ibut ion.  

Writ ing the exp re s s ion  f a r  t e m p e r a t u r e  in the  f o r m  

tn (r/R4) _~ [ In(r/~1) 1 
r = T~ + (To. - -  r~) ~ tW + (V~ - -  ~ i~(~/~)l z + o (r), 

we obtain f r o m  the  or ig inal  s y s t e m  of  equations (1.1), (1.5) fo r - the  d e s i r e d  funct ions v(r) ,  |  

_ ~  nit ~p i o [  a,~ a~ i o (  ao~ 
(2.i~ 

with boundary condit ions for  @: 

0 -=0 a~ r =  Rl,  R~. 

Eliminat in~ the p r e s s u r e  f r o m  the f i r s t  two equations of  Eq. (2.1) by c r o s s - d i f f e r e n t i a t i o n  and subtract ion,  
and cons ider ing  the equation of s ta te  (1.5), and the explici t  f o rm of the field and temperat~are,  we obtain for  v(r) 
an o rd ina ry  t h i r d - o r d e r  d i f ferent ia l  equat ion with a known f r e e  t e rm:  

0 [ i  0 [  ~ 1  [ ~ ,~ ln(r/R1) ] ~[~-~r[r~rJJ It~ 

the genera l  solution of which is 

v = - -  n" ~ l - - Y n ( R 2 / R 1 ) t - - - i ~ ' ~  N cir2-~cs B -4-ca. (2.2) 

The  t h r e e  a r b i t r a r y  cons tan t s  ei ,  c2, c 3 a r e  de te rmined  f r o m  the two boundary condit ions at r =R1, R2, 
and by speci fying the liquid flow r a t e  through the channel c r o s s  sect ion.  If  the channel iS open, the flow motion 
may  be brought  about by an ex te rna l  p r e s s u r e  d i f fe rence  between the  ends.  In the c a s e  of  a c losed  channel 
where  fo rced  convect ion is  absent ,  and mot ion is produced solely by the  the rmomagne t i c  m e c h a n i s m  of f r e e  
convect ion,  no liquid should be  expended and the  th i rd  cons tant  is found f r o m  the condition 

~ 2  

o( vdr = 0. (2.3) 

Most  s t r ik ing in Eq.  (2.2) is the fact  that  the p r e s e n c e  of a cons tant  rad ia l  p r e s s u r e  d i f fe rence  T 2 - T I 
ha s  no effect  on the veloci ty  d is t r ibut ion of the convec t ive  mot ion.  

F o r  a spec i f ied  ve loc i ty  p rof i l e  Eq.  (2.2), in tegra t ion  in  genera l  f o r m  of  the  th i rd  equation of Eq. (2.1) 
for  t e m p e r a t u r e  o f f e r s  no difficulty in pr inc ip le ,  although it is  c u m b e r s o m e :  

r 

0 t In (r/R D 1 drl dr "b c4 In r 
Rt 

The  boundary  condition | =0 at  r = R  1 is fulfi l led au tomat ica l ly ,  and the  cons tant  c 4 is de te rmined  by the 
second boundary  condit ion.  

On the  ba s i s  of  the solutions obtained, we will cons ide r  some conc re t e  s i tuat ions.  F i r s t  of all le t  the 
t e m p e r a t u r e  g rad ien t s  on both channel  boundar ies  be  identical  (3~1= ~/2 = 7) and both boundar ies  be  r ig id  (v= 0 
at  r=R1,  R2). Then, introducin~ the  d imens ion les s  coord ina te  x=  (r - Ri) / (R 2 - R  l) with range  f r o m  0 to 1 and 
dedimensional iz ing  the velocity with the sca le  fac tor  ~</(R 2 - RI) , we obtain  the d is t r ibut ion  of the d imens ion-  
l e s s  ve loci ty  V of  the c losed  convec t ive  flow in the  channel in the f o r m  

17 == Ram [2 ~ 5) {x --  x 2 -k c ix (2 + 6x) in (l-kS) - -  (2+6) In (1 +Sx)]}, 

c = 5/2[2(52 A- 35 + 3)ln (1 + 5) - -  38(2 -k 5)1, (2~ 

where  6 = (R~ --  R1)/R~; Ram = ~oKi7 (R,. --  Ri)4/~]• 2 i s  the  magnet ic  Rayleigh number .  
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F o r  a smaU channel  width (6 <<1) solution (2.4) t r a n s f o r m s  to the weU-known solution descr ib ing  plane-  
pa ra l l e l  f r e e  convec t ive  flow in a hor izonta l  l aye r  with longitudinal t e m p e r a t u r e  gradient  under  the influence 
of g rav i ty  [4]: 

V = (Ram/ i2 ) (2x3  - -  3x  ~- + x) ,  

in which the r o l e  of  the conventional  Rayleigh number  is p layed by Ram and the motion actual ly o ccu r s  in a 
magnetic  f ield with constant  gradient  i / R l  equivalent to the acce le ra t ion  of gravi ty  g. 

The ve loc i ty  p rof i l es  ca lcu la ted  f rom Eq. (2.4) fo r  var ious  values  of  6 a r e  p resen ted  in Fig .  1 (curve 1 
c o r r e s p o n d s  to 6 =0.1; c u r v e  2, 6 =1). F o r  the same  values  of  Ram with inc rease  in 6 the intensi ty  of the 
motion d e c r e a s e s .  The dependence of maximum veloci ty  Vm in the left  half of the channel x < 0.5 (curve 1) 
and in the r ight  half  (curve 2) is shown in Fig.  2. 

The  following situation, which is  of special  in teres t ,  develops when the external  boundary of the  liquid 
(r =R 2) is  f r ee ,  while the  in ternal  boundary,  as  before ,  is r igid.  We s t r e s s  that  a cyl indr ica l  f r e e  sur face  is 
comple te ly  natural  for  a magnet izable  liquid in the  given case ,  i .e. ,  in the absence  of gravi ty and in a magnetic 
f ield with a rad ia l  intensi ty  gradient .  Then the boundary condit ion for  velocity on the f r e e  surface,  with con-  
s idera t ion  of the t e m p e r a t u r e  dependence of  the  su r face  tension coeff ic ient  (a = a 0 - r - TO)), which can be 
obtained f r o m  the equation of s t r e s s  balance on the boundary, will have the fo rm [7] 

(or) o = o r  
~l ~r ,=,.  = 0r 0z ~7 (~1 = ~': = 7). 

The  su r face  tension gradient  on the f r e e  boundary p roduces  a thexmocap i l l a ry  convect ion mechanism [7], 
which ac ts  toge ther  with the magnetic  fo rces .  

The  solution (2.2) fo r  the given boundary condit ions appears  a s  follows: 

12 St,,Ki'7 (l. - -  Ra ) ~ (~xoKi'~ ciy ~ ; 2 R 9 ( r r2 - -  t~  t 
'1 k2~/r 2q-Z,%_/kr 7 ) + D  ln/~ 2-~ /" 

The  constant  D is de te rmined  f rom the  condit ion os c losed  flow (2o3). 
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F r o m  the  equation obtained it follows, f i r s t  of all,  tha t  the effect  of  the t h e r m o c a p i l l a r y  m e c h a n i s m  is  
insignif icant  a t  ~< ~0Ki, independent of channel  g e o m e t r y .  At  the  s a m e  t ime ,  th is  effect  is  dominan.t at  
(r >/~ 0Ki(R2/Rl) ~ The  d imens ion les s  ve loc i ty  dis t r ibut ion in the channel for  pure ly  t h e r m o c a p i l l a r y  convect ion 
is  given by the exp re s s ion  

Ma { x ( 2 § 2 4 7  ' (2.5) V = 2{! 7- 5) 

D = --5(3 + 6)/[6(1 + 6)3 In (i + 6) --  650 + 5) 2 --  6~-(3 + 6)], 

where  Ma = oy(B~ - -  R1)2/q• is  the  Marangoni  n u m b e r .  

Th is  ve loci ty  p rof i le  is  depicted in Fig .  3 (curve 1 c o r r e s p o n d s  to 6 =0ol,  c u r v e  2 to 6 =100). With 
i n c r e a s e  in 6 at the same  value of Ma the  in tensi ty  of  the  mot ion on the  f r ee  su r face  i n c r e a s e s .  The dependence 
of V(1) on 6 is  shown in Fig .  4. 

At  smal l  channel width (6<<1) Eq. (2.5) t r a n s f o r m s  to the  k n o w n  expres s ion  for  plane-paral leL flow [4]: 

V = (Ma/4)(2x --  3x~). 

3. We will cons ide r  the flow of a magne t i zab le  l iquid in a hor izonta l  p l a n e - p a r a l l e l  channel cut  off by 
a m a s s i v e  f e r romagne t i c  having pyromagne t ic  coeff ic ient  K and magnet ic  susceptibili~r )~ the s a m e  as  t h o s ~ o f  
the liquid. These  l a s t  r e q u i r e m e n t s  a r e  significant  in obtaining exact  one -d imens iona l  solutions of the Max-  
well equations and sat is fying the boundary condit ions.  The g e o m e t r y  of  the p r o b l e m  is  depicted in Fig.  5. A 
t e m p e r a t u r e  d i f ference  is  mainta ined a c r o s s  the  wal ls  of  the m a s s ,  ensur ing a constant  longitudinal gradient  
Y in the boundar ies  of the l aye r :  T =TO+ yx  at  y= ~ l .  The  en t i re  s y s t e m  is  located  in an ex te rna l  homogene= 
ous  magnet ic  f ield H ~ no rma l  o r  tangent ia l  to the l a t e r a l  boundar ies  of  the  m a s s .  Then in the cen t ra l  port ion 
of the m a s s ,  accord ing  to Maxwel l ' s  equations (1.4), (1.5) in the  f i r s t  c a s e  the  following dis tr ibut ion of field 
He and magnet iza t ion  Me a r e  r e a l i z ed  (values outs ide  the liquid l a y e r  will be  denoted by a subsc r ip t  e): 

H~ v = M ~  = O, H ~  .= H ~ .~, [gT/(i -~ ~)] x, (3.1) 

H ~ + :lI~ = H o, Mex = M~ --  [KT/(t + ~)1 x 

while in the second c a s e  

H e x =  Mex = O, H~u = H~ = H~ Meu = M~ KTx.  (3.2) 

In the cen t ra l  pa r t  of the  channel  we will have a p l a n e - p a r a U e l  convec t ive  liquid mot ion V.y = 0, Vx=V(y) and 
t e m p e r a t u r e  dis t r ibut ion T = T ~  y x + ~ ( y ) ,  while i n t h e  boundary l a y e r s  x = •  l ,  v = ~ = 0. 

In acco rdance  with Maxwell~s equat ions and the boundary  condit ions,  the f ield and magnet iza t ion  d i s t r ibu-  
t ion within the liquid will be desc r ibed  by the  following expres s ions :  

a) for  ex te rna l  magnet ic  f ield H e pa ra l l e l  to the  l a y e r  (Eq. (3.1)) 

H u : M  u = 0 ,  H x : = H ~ - [ K V / ( t + Z ) ] x ,  (3.3) 

H i  = II~, M~ = :ll e --  [K?/(I -= 7.)1 x --  K0 (!/); 

b) fo r  external  magnet ic  f ield H e pe rpend icu la r  to the  l a y e r  (Eq~ (3.2)) 

H~: = M~: = 0, H u -- H~ -i- [s -/-: X)] O (g), (3.4) 

H~ ~- 31 o o ., o = He-~_'ll~, M u =  M ~  Kv.r~--[K/( I  + ~)]O(y). 
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We note that all inhomogeneities in the field and magnetization are  produced by the temperature  in- 
homogeneity. In the f i rs t  case  the magnetic field intensity has only a horizontal gradient, in the second, only 
a vert ical  gradient. 

To find the desired functions v(y) and ~(y) the system of equations (1.1)-(1.5) gives 

v~ = ~0"; (3.5) 
a )  H = [H(x), 0, 01 

--Op/Ox + ~]v" + ~oMOH/Ox = O, --Op/Oy --  9g = 0; (3.6) 
b) H = [0, H(v), 0 i  

--Op/Ox + qv"  = O, --Op/Oy --  pg + ,aoMOH/Oy = 0, (3.7) 

where the pr imes  denote differentiation with respec t  to y. 

Eliminating the  p res su re  f rom Eqs.  (3o6), (3.7} and introducing the dimensionless coordinate ~ = y / l ,  
velocity V = ( l / ~ ) v ,  and tempera ture  | =~/~/ l ,  and considering Eqs. (3.3), (3.4) we obtain 

V =  O", a) V ' " - - R a r a O ' - -  Ra = 0 ,  (3.8) 
h) V"" + Ram~9' -- Ra = 0 

and boundary conditions V = | = 0 at ~ =* 1. 

The conventional Ra and magnetic Ram Rayleigh numbers are  defined in the present case in the following 
manner: Ra = ~gyl4p/uq, Ram = ~olf'ySlV~lx(i + X). We note, f irst ,  that the value of  Ra m is always positive, 
and second, that the force producing convection in the given situation is gravitation. For  Ra = 0 the problem 
of Eq. (3.8) becomes an eigenvalue problem and gives the value of the cr i t ical  Ram, corresponding to disrup- 
tion of mechanical equilibrium, equal to (~/2)  4. This is t rue  only of case  a) where the magnetic field is 
paral lel  to the layer .  In case  b) mechanical equilibrium of the liquid is stable. For  Ra ~ 0 motion develops 
at any value, no matter  how small.  

System (3.8) is equivalent to the equations describing plane-parallel  convective flow of a conventional 
liquid in an inclined layer  with a longitudinal t empera ture  gradient [6]: a) with an acute angle between the 
tempera ture  gradient and force of gravity; b) when the angle is obtuse. This calls  to mind the fact that in 
both cases  the effect of the magnetic field is equivalent to a longitudinal component of the gravity, despite 
the fact that in the f i r s t  case  the field has only a longitudinal, or  in the second case, t ransverse ,  intensity 
component within the liquid. F rom the example considered it is c lear  that the action of a magnetic field in- 
tensi ty gradient on thermal  convection of a magnetizable liquid is not always equivalent to a gravitational 
force  acting in the same direction, in cases  where the gradient is produced by a tempera ture  inhomogeneity. 

The solutions of Eq. (3.8) with specified boundary conditions corresponding to closed flow have the form 

Vh--C~ ~ ~h~ ) '  ~ = / 

V -  Ra ( sin e~ch ~_ co_ss e~ sh e~ 

S = tgec the  + ctgethe,  e---- ~/-R'~m!4 

and, as was noted ear l ie r ,  have been studied a number of t imes  for conventional liquids (see, e.g., [6]). 
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E F F E C T  OF S P E C I M E N  T E M P E R A T U R E  ON T H E  B R E A K I N G  

P O I N T  F O R  S P L I T T I N G - O F F  IN A M G - 6  A L U M I N U M  A L L O Y  

Y u .  V.  B a t ' k o v ,  S .  A .  N o v i k o v ,  
V. A.  S i n i t s y n ,  Y u .  S.  S o b o l e v ,  
a n d  A.  V. C h e r n o v  

UDC 620.171.3 

The investigation of the tempera ture  dependence of the strength of constructional mater ia ls  
under intense shock loads, including breaking loads, is of considerable practical interest .  
There are  cer ta in  technical difficulties involved in loading the mater ia ls  and making the r e -  
quired measurements  in such experiments.  Hence, the munber of papers devoted to this 
problem is extremely limited. In [1, 2] data is given on the e las t ic -p las t ic  propert ies  of a 
number of metals  at normal and high tempera tures ,  obtained by investigating the parameters  
of elastic waves excited by an explosion. In [3, 4] investigations were ca r r i ed  out of the 
tempera ture  dependence of the breaking point for  splitting-offin steel and copper.  In the 
present  paper we investigate the effect of the specimen tempera ture  on the breaking point for 
splitting off in widely used AMG-6 aluminum alloy in the temperature  range from 0~C to 550~C, 
i.e., practically up to the temperatxLre at which the alloy begins to melt .* 

The specimens investigated were cut from a single blank and were disks 70 mm in diameter  and 10 mm 
thick with a conical side surface (at an angle of 45"). 

The specimens were tested on special equipment, a diagram of which is shown in Fig. 1. 

Specimen 1 was heated by the radiant  heat flux from a Nichrome filament heater  2 with a power of 3 kW 
(50 A, 60V), mounted on a heat- res is tant  screen.  The temperature  of the specimen was monitored[ with a 
thermocouple 3 up to the instant when the specimen was loaded. The t ime taken to heat the specimen up to a 
tempera ture  of 550~C was ~ 20 min. The nonuniformity of the tempera ture  over the specimen thiclmess at 
the instant of loading did not exceed ~ 5qC. The heated specimen was displaced by means of a cable 4 along 
the direction 5 on a special platform 6 under the loading device 7. The specimen was loaded by a shock alu- 
minum plate (110 • 150 • 4 ram), scat tered up to the required velocity by a glancing detonation waw~ from a 
layer  of explosive placed on it, initiated simultaneously along one of the faces of the plate from the explosive. 
To prevent split t ing-offin the s t r iker  the la t ter  was separated from the explosive by a layer  of porous ma-  
ter ia l .  The velocity of the s t r iker  was varied by varying the thickness of the layer  of explosive, and simul- 
taneity of the shock on the surface of the specimen was achieved by placing the s t r iker  at a certain angle to 
the specimen depending on the velocity of the s t r iker .  The split-off plates formed as a resul t  of ~ e  loading 
were collected in practically undamaged form using a porous damper 8 of low rigidity placed in a steel con- 
tainer  9. 

The method of determining the breaking point was as follows. A shock load was applied to the specimen 
and the presence or absence of split-offwas observed visually af ter  the experiment.  (If necessary the specimen 
was cut along an axis, a thin section was made, and metallographic analysis was car r ied  out.) By a gradual 

*The melting of alloys and solid solutions is charac ter ized  by a melting tempera ture  range. For  AMG-6 alloy 
the tempera ture  at which melting begins is N570 ~ and the tempera ture  at which melting ends is ~ 640~ [5]. 
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